Loading...

技术资源

九月 2018

如何在EsgynDB中使用机器学习库

九月 19th, 2018|

机器学习(ML)库正变得越来越流行,现在有各种各样的这类库 - 维基百科中提及了49个。 这些机器学习库需要庞大的数据,通常此类数据是储备在关系型数据库中的业务数据,比如存放在EsgynDB或以其他形式储备在Hadoop数据湖中。 简单的集成 - JDBC和HDFS 有多种方法连接机器学习库和EsgynDB。 其中一种方法是使用JDBC,这是大多数软件包支持的方法。 用户在他们挑选的系统上运行机器 [阅读更多]

三月 2018

使用UPSERT语句,将Apache™Kafka数据导入Trafodion表

三月 2nd, 2018|

Apache™Kafka简介 Kafka是一个流处理服务平台。其中,生产者(Producers)向主题(Topic)中发布消息,消费者(Consumers)读取并处理发布来主题中的消息。Kafka的主题是已发布消息的日志副本集合,这些日志都具有时间戳。可以对主题进行分区,以增加储备容量并提高并行度。 如图1所示,向同一个主题发布消息的不同生产者进程可以: a) 将消息写入特定的分区(蓝色箭头); [阅读更多]

二月 2018

江苏快3EsgynDB支持与ORC的紧密集成

二月 13th, 2018|

Apache Hadoop™生态系统的优势之一就是能够整合不同的技术,解决各种大数据问题。要实现优良的整合,就要注意易用性以及数据交换的速度和效率。 EsgynDB™是Esgyn公司的web-scale企业级SQL-on- Apache Hadoop™解决方案,现已支持与Apache ORC™文件的紧密集成。在本文中,我将介绍结合EsgynDB和ORC文件所带来的好处,然后探讨该集成解决的两个复 [阅读更多]

为何HDP需要EsgynDB?

二月 9th, 2018|

加快从大数据中获取业务价值和见解 使用EsgynDB,可在单个大数据平台上简便地运行OLTP、ODS、BI和分析型工作负载。EsgynDB是唯一一个为不同的数据源提供可插拔数据治理框架的大数据SQL解决方案,用于处理混合工作负载(实时读写),从而最大限度地减少数据迁移和复制。EsgynDB通过在数据库中转换数据(ELT)来降低ETL的成本。其MPP架构可以并行执行查询,确保满足最严格的SLA。成 [阅读更多]

针对MPP数据库数据倾斜问题的技术——Skew Buster

二月 9th, 2018|

Skew Buster是一种针对MPP数据库运行时数据倾斜引起的性能问题的技术,可以保证在复杂查询的任意阶段,中间数据都可以平均分布,充分利用MPP系统的多节点的并发处理能力。 Skew Buster简介 当今随着信息技术,人工智能,和网络技术的不断发展,企业在生产经营过程中产生的历史数据非常容易就达来上百T,甚至P级别,因此依靠单机的scale up能力已经无法满足。MPP数据库能够线性地横向 [阅读更多]

简述Trafodion DCS工作流程及原理

二月 9th, 2018|

DCS是Data Connectivity Service即数据连接服务的简称,是Trafodion非常复要的组成部分,它接收连接请求,并合理分配连接请求,借助Zookeeper完成HA的功能。 简介 最近越来越多的人在Trafodion社区问来关于DCS的一些问题,我在这里给大家统一介绍一下这个Trafodion的复要组成部分。DCS是Data Connectivity Service即数据连 [阅读更多]

五月 2017

EsgynDB是唯一运行整个TPC-DS基准测试的SQL-on-Hadoop解决方案

五月 16th, 2017|Tags: |

评估数据库BI/分析工作负载的最佳基准是TPC-DS。EsgynDB已与Apache ORC深度集成并优化了性能,虽然处理TPC-DS型工作负载的结果还有待提高,但目前的结果还是较为可观。 在处理运营型工作负载领域,目前EsgynDB还未棋逢对手。在进行TPC-DC测试时,EsgynDB使用Hive(利用Tez引擎)与ORC进行性能对比。 TPC-DS基准测试的数据量是10TB。EsgynDB能够 [阅读更多]

一月 2017

[视频] 使用HDFS冷热数据的架构注意事项

一月 30th, 2017|

使用HDFS冷热数据 以下的视频是易鲸捷专家关于HDFS冷热数据的介绍。 热数据是指,您期望快速访问的数据(主要用于报告)。冷数据是指,不常访问的数据(主要用于BI或分析)。可以设置一定的数据量(例如,最新的100GB数据)、特定的时间段(1天或1周)、特定的数据集,识别相应的热数据。 企业使用不同的平台,分别储备和治理热数据、冷数据。因此,数据需要从一个数据库迁移或复制来另一个数据库。不同用途的 [阅读更多]

[视频] 使用SQL查询JSON——EsgynDB Crunchbase演示

一月 6th, 2017|

JSON是通过基于web的API进行数据储备和交换的实践标准。使用API调用访问JSON数据是耗时的,需要开发人员具备高层次的专业晓识。而SQL更加简便,可以加快应用程序的迭代开发。在EsgynDB的演示中,说明了如何使用SQL查询Crunchbase的数据。 Crunchbase通过其JSON格式的API,提供公司、创始人、投资者、员工的相关信息。由于EsgynDB支持结构化、半结构化、非结构化 [阅读更多]

十二月 2016

[视频] EsgynDB + Tableau演示

十二月 13th, 2016|

EsgynDB+Tableau集成演示 无缝集成 EsgynDB能像连接来其他数据库一样,非常简便地连接来Tableau。您只需提供IP地址和用户凭证。进行集成的猜测试和支持时,将Tableau作为EsgynDB的标准组件。 自助式BI/分析 使业务分析师能够使用数据湖,无需Java开发人员和数据科学家的参与。 支持数据仓库的交互式查询,无需为了加速查询而进行Tableau级的数据缓存。 支持大数 [阅读更多]

十一月 2016

[网络研讨存档] 提供Hadoop混合事务和分析处理(HTAP)

十一月 3rd, 2016|

Hadoop混合事务/分析处理(HTAP) 随着业务灵敏性的提高,事务型数据的实时和近实时分析也变得更加复要。对于资深的数据库从业人员,事务和分析属于两个不同的系统。这种竖井式的方法会产生:昂贵的ETL过程,专门化的数据集市,SLA问题,特别是造成对旧数据的分析。 目前的架构趋势是,在同一个数据储备中同时进行事务和分析处理。Gartner将这样的功能称为混合事务/分析处理(HTAP)。 Gar [阅读更多]

十月 2016

Apache Zeppelin在Apache Trafodion上的可视化——已更新

十月 31st, 2016|Tags: |

介绍 Apache Trafodion(正在孵化)和EsgynDB(Esgyn的商业版)支持数据可视化工具(例如,Apache Zeppelin和Tableau),具有标准JDBC/ODBC连接。本文复点介绍如何实现Apache Zeppelin在Trafodion上的可视化。 Apache Zeppelin基于web,数据专家可以通过该工具进行大规模数据挖掘和可视化的协作。大规模数据分析的工作 [阅读更多]

[下载] 您的SQL引擎是否发挥了效果?

十月 5th, 2016|Tags: |

您是否正在挑选合适的SQL引擎? 要从各种各样的SQL引擎中挑选合适的一款并非易事。所有的SQL-on-Hadoop引擎(无论是否开源)号称具有的功能都如出一辙。那么,如何才能省去长达数周的开发,并挑选真正强大的SQL引擎? 如何挑选强大的SQL引擎? 阅读我们的指南,本指南包括以下内容: 如何挑选成熟的SQL引擎 向您的SQL-on-Hadoop供应商提出13个问题 确保您可以实现真正的扩 [阅读更多]

九月 2016

江苏快3[视频] 风险分析——金融服务演示

九月 28th, 2016|

风险分析数据仓库演示 您是否正在努力解决目前数据仓库的实现的各种问题?在专有数据库(例如,Oracle和Teradata)上实现的数据仓库在以下方面存在很多问题:扩展,加载,查询性能,缺少对非结构化数据的支持……如果您的企业实行基于Hadoop的Big Data计划,那么EsgynDB可以帮助您迁移当前的数据仓库环境或帮助您卸下一些工作负载,便于您充分利用Hadoop并克服当前专有数据仓库系统的局 [阅读更多]

易鲸捷IoT平台演示视频

九月 20th, 2016|

物联网(IoT)演示视频 您是否正在建立或准备建立一套IoT解决方案? 物联网(IoT)每分钟都会生成大量数据。因此您需要一套全面的IoT数据治理系统,支持快速摄取、实时警报、报告和猜测分析。由于IoT是实时的,因此不适用传统的数据处理方式。 EsgynDB是可以同时处理所有IoT工作负载的All-in-one SQL数据库。观看以下视频,了解Esgyn的IoT解决方案。 无论您准备在云端(例如, [阅读更多]

90秒了解易鲸捷

九月 8th, 2016|

观看以下视频,90秒了解易鲸捷。易鲸捷提供用于大数据的企业级SQL数据库EsgynDB,帮助您通过大数据实现更多功能,例如事务、运营型数据储备、BI,这些功能均在同一个SQL数据库中实现,无需进行大规模的数据迁移。EsgynDB适用于多种工作负载和用例(例如,数据湖SQL、RDBMS卸载、IoT数据治理、企业文档储备……)。 [阅读更多]

八月 2016

探觅理想数据库——O’Reilly Media出版

八月 11th, 2016|

混合事务/分析处理的挑战 数据库正经历如火如荼的发展。十年前,web-scale的公司纷纷从专有的关系型数据库转变为通过NoSQL和Hadoop处理Big Data用例。如今,由于各种各样的原因,趋势又走向了基于SQL的解决方案。各个公司真正需要的,是可以处理其所有运营型工作负载、OLTP、BI和分析型工作负载的一套系统。那么,是否存在这样的一体化数据库呢? O’Reilly发布的此项报告是由易 [阅读更多]

七月 2016

江苏快3[下载] 比较各种Hadoop SQL引擎

七月 21st, 2016|

要从各种各样的Hadoop SQL引擎中挑选合适的一款并非易事。如果所有的SQL-on-Hadoop引擎(无论是否开源)号称拥有的功能都如出一辙,那么您需要一项清单,用于比较各种产品。下载清单,使您无需浪费宝贵的开发资源来进行昂贵的实验。 本项清单涉及以下内容: 您需要的基本功能。ANSI SQL?开源?运行UDF? 您的SQL-on-Hadoop解决方案应该支持何种类型的工作负载?目前,您可 [阅读更多]

[网络研讨存档] 从MapReduce来SQL-on-Hadoop

七月 13th, 2016|

MapReduce是从基于Hadoop的Big Data实现中检索数据的标准机制。但是由于创建和保护MapReduce的复杂度和成本较高,这套机制逐步被剔除。如今,开发人员都在觅求基于SQL的解决方案。观看我们的网络研讨存档视频,了解从MapReduce来SQL的转变所带来的以下好处: 加速应用程序的开发 利用SQL工具和资源 最大程度降低对数据专家和Java程序员的依靠 通过Big Dat [阅读更多]

[网络研讨存档] 通过Big Data实现业务转型——六个用例

七月 13th, 2016|

观看我们的网络研讨视频,通过六个用例了解Big Data的潜力。 数据驱动业务。 客户导向。 提高业务灵敏性。 在全球经济中进行有效的竞争。 通过IoT和企业的数据湖,通过Big Data实现更多。 您将了解来: 如何识别机遇 如何评判Big Data的用例 如何制定战略路线 如何挑选合适的开源堆栈 本视频的适用人群: Big Data开发人员,架构师和IT治理人员 产品和部门负责人 C [阅读更多]

不断成熟的Hadoop生态系统依然存在不足之处

七月 8th, 2016|

不断成熟的Hadoop生态系统依然存在不足之处 最近,随着Hortonworks宣布推出由Apache HAWQ支持的Hortonworks HDB,Hortonworks和Hadoop周围的生态系统也不断发展。Hadoop已有10年的历史,虽然其相关性常常遭受质疑,但依然是很多全球性企业Big Data项目的关键基础。 随着基础技术的不断发展,自主创新起着至关复要的作用,客户和开发人员不得不自行 [阅读更多]

江苏快3挑选合适的SQL引擎替代MapReduce作业

七月 8th, 2016|

众望所回的新趋势 目前的趋势是摆脱MapReduce,降低构建和保护MapReduce作业的复杂度并提高性能,同时利用现有的IT资源。至于如何摆脱MapReduce、如何替代MapReduce作业、使用怎样的工作负载,这些问题都是战略性的决策。同时,要考虑Hadoop可以发挥怎样的战略性作用,使企业通过数据获得利润。 由于要访问储备在HDFS的数据,就要使用MapReduce中的键,因此MapR [阅读更多]

六月 2016

使用Docker容器安装Apache Trafodion

六月 30th, 2016|Tags: |

使用Docker容器安装Apache Trafodion 我们很高兴地推出Apache Trafodion 2.0(正在孵化)Docker。现在,全球的开发人员都可以快捷地在Linux上安装单节点的Apache Trafodion。 通过Apache Trafodion和EsgynDB(Esgyn的商业版),您可以使用SQL-on-Hadoop,减少或排除MapReduce对数据的访问和处理。与其 [阅读更多]

三月 2016

治理日志、IoT和事件数据的设计模式

三月 9th, 2016|

治理日志、IoT和事件数据的设计模式 Trafodion在IoT(物联网)空间、电信和网络安全中的一个常见应用场景是用一个非常大的单表,记录实时事件。用户期望快速摄取新数据,查询数据,并清理过时的数据。 对于这种情况,我们一般建议客户使用一种设计模式。该模式包含三个要素:Salting、分块和Stripe合并。 Salting 第一个要素是salting,在集群中平均分布数据。通过salting [阅读更多]

二月 2016

EsgynDB Manager

二月 24th, 2016|

EsgynDB Manager 简介 EsgynDB Manager 是一款适用于EsgynDB的基于Web的企业治理工具,它答应数据库治理员: 监控Esgyn节点和Esgyn服务的运行状态。 监控集群或节点的关键系统、HBase和EsgynDB的各项运行时指标。 监控并治理(取消)EsgynDB查询。 查看详细的编译时和运行时查询统计信息,包括可视和文本解释计划。 生成系统资源使用情况的电子 [阅读更多]

江苏快3其他RDBMS来Trafodion的数据迁移

二月 19th, 2016|

本文介绍了如何将数据从现有的RDBMS迁移来Trafodion数据库。从其它的RDBMS或外部数据源向Trafodion集群中导入大量的复要数据,可以通过下面两步完美实现: 在Trafodion集群中,将数据从源头导入Hive表。使用下列方法之一: 在Trafodion系统中,使用一个类似Apache SqoopTM的工具,将数据从远程的RDBMS(例如,MySQL或Oracle)迁移来Hive表 [阅读更多]

跨集群事务治理器

二月 8th, 2016|

提供真正的Hadoop分布式跨集群事务治理器 目前,Hadoop广泛应用于BI和分析工作负载。HBase在Hadoop上提供低延迟的NoSQL Big Table解决方案,托管运营型工作负载。但是,HBase内建的原子操作不适用于具有复合操作的工作负载。随着事务型SQL-on-HBase解决方案的出现,Hadoop生态系统使企业能够在Hadoop上全面运行各种事务型工作负载。这种转变将带来以下好 [阅读更多]

一月 2016

Trafodion + Kafka = Trafka

一月 22nd, 2016|

Apache Kafka的Apache Trafodion消费者 本文介绍了如何实现Apache Trafodion与Apache Kafka的无缝结合。我们展现了Trafodion如何轻松地获取数据,如何结合不同的开源组件,从而使用 Apache Kafka、 Trafodion、 HBase 和Hadoop创建近实时的流式处理工作流。 如何实现各组件的结合? 什么是Kafka?Kafka是一个 [阅读更多]

Apache Trafodion 1.3 发布

一月 14th, 2016|

Apache Trafodion(正在孵化)宣布完成了Apache孵化器项目的第一个版本。Trafodion 1.3 修复了多种bug,增加了新功能、改进了Apache Trafodion页面。点击此处或查看版本说明。 这3个月内,有很多新的奉献者和代码提交者参与了Trafodion项目。该项目的社区正在日益壮大,致力于构建开源的、分布式、全量ACID的Hadoop生态系统数据库。Trafodio [阅读更多]

Hibernate的Trafodion方言

一月 5th, 2016|

对象-关系映射(ORM)提供了一个框架,应用程序可以使用一个对象范例,查询并操作数据库中的数据。该框架以多种语言实现,封装了数据操作所需的代码。这样,您无需了解SQL,即可使用一个对象访问数据,该对象隐藏了每个数据库查询语言的变化。 假设有以下的Employees表: Id Name Address Department Salary 1 John Milpitas, CA Engineer $ [阅读更多]

十二月 2015

双活的运营型SQL-on-Hadoop工作负载

十二月 9th, 2015|

周二,Esgyn发布了EsgynDB企业版2.0,新增了多种功能的支持。本文介绍了跨数据中心的全面双活事务支持。对于跨多行、表和/或服务器的事务,Hadoop生态系统支持在异地、各集群或表中复制关键的运营型业务数据。该功能支持异地的高可用集群,因此对关键数据是非常复要的。如果由于自然灾害、同城状况、人为错误导致集群offline,则可以立刻启用另一个peer集群,并实现零事务丢失。 通过双活配置, [阅读更多]

十月 2015

如何造就一流的数据库?

十月 8th, 2015|

相比于其他的SQL-on-Hadoop解决方案,Trafodion具有怎样的优势?“在Hadoop上运行运营型工作负载”一文中,我指出了Trafodion专注于运营型工作负载(OLTP、ODS)。本文介绍了Trafodion和其他SQL-on-Hadoop解决方案在技术上的差异。 本文中,我探讨了造就一流数据库的四个关键要素,介绍了Trafodion是如何实现这些要素的。您可以将Trafodio [阅读更多]

九月 2015

在Hadoop上运行运营型工作负载

九月 21st, 2015|

相比于Oracle、IBM DB2、Microsoft SQL Server、Informix、MySQL、PostgreSQL、Teradata等关系型数据库以及Impala、Tez、Hive、Drill、Presto等SQL-on-Hadoop解决方案,Apache TrafodionTM(正在孵化)具有怎样的优势? Apache Trafodion是一流的数据库,与上述的关系型数据库并驾齐驱 [阅读更多]

七月 2015

我们的渊源

七月 20th, 2015|

Esgyn公司是高科技行业的新星,我们的使命是创建并培育Apache® Hadoop生态系统中的企业级事务型和运营型SQL。但是有很多公司都在解决SQL-on-Hadoop的问题,我们的优势是什么?本文中,我就这个话题展开了讨论。 Esgyn和普通的初创公司有所不同,我们已经创建了一个产品并将其开源(正在孵化的Apache Trafodion数据库治理系统)。另外,我们已经拥有一支具有凝聚力的30 [阅读更多]

江苏快3 pk10登录地址 pk10登录地址 1分赛车 凤凰快3

江苏快3免责声明: 本站资料及图片来源互联网文章-|,本网不承担任何由内容信息所引起的争议和法律责任。所有作品版权归原创作者所有,与本站立场无关-|,如用户分享不慎侵犯了您的权益,请联系我们告知,-|我们将做删除处理!